add 9 1 | @ | (Y add1) 9 1 |
= | (l f. (l s. f (s s)) (l s. f (s s))) add1 9 1 | |
® | (l s. add1 (s s )) (l s. add1 ( s s)) 9 1 | |
® | add1 ((l s. add1 (s s)) (l s. add1 (s s))) 9 1 | |
= | add1 (Y add1) 9 1 | |
= | ( l fmn. if (iszero n) then m else succ (f m (pred n)) ) (Y add1) 9 1 | |
® | if (iszero 1) then 9 else succ ((Y add1) 9 0) | |
® | succ add1 (Y add1) 9 0 | |
® | succ (if (iszero 0) then 9 else succ ((Y add1) 9 (pred 0)) ) | |
® | succ 9 | |
® | 10 |