HirondML
Fair thread migration in O’Caml

Emmanuel Chailloux (PPS) - Julien Verlaguet (Univ P6)
http://www.pps.jussieu.fr/"emmanuel/Public/Dev/Hiro ndML

HLPP 2005




o Fair Threads in OCaml
» An alternative to POSIX threads
s Native implementation

» Fair Thread Migration
s A high level contruction for distributed programming
s Permits communication in a type-safe manner

» Objectives :
s A clear semantic
s An efficient implementation




» Fréderic Boussinot
» MIMOSA EMP-CMA project / Inria Sophia Antipolis
» http://lwww-sop.inria.fr/mimosa/rp

» The existing implementations
s C
» Java
s Scheme




» Mixing cooperative and preemptive policies
» Each thread is attached to a scheduler
s Threads within a same scheduler are cooperative
» Schedulers are concurrent to each-other

» The synchronisation system
» Based on “instants”
s Takes place inside a scheduler

s Each operation is “finite”
= No dead-lock




Instant :
» EXxecution of each thread until the next cooperation point
» The scheduling policy is of type “round-robin”

The different ways to cooperate :
» explicitly : function cooperate

» Implicitly : waiting await




let sched=Fthread.create scheduler();;

let rec fth x=
Printf.printf "I am ft number %d\n" X;
Fthread.cooperate();
fth x

Fthread.create sched fth 1;
Fthread.create sched fth 2;
Fthread.start_scheduler sched;
Fthread.exit();;

(* Output : *)

(* I am ft number 1
| am ft number 2
| am ft number 1

. %)



» A signal is emitted during an “instant”

» A signal reaches all the fair threads waiting during an
Instant

» A thread can only wait for a signal during a limited
number of instants




let fthl()=
Printf.printf "I am %d | am waiting \n" X;
await signal;




» Cooperative threads : clear semantic

s NO mutex
s No lost signals
s No distributed signals

» Schedulers : grouped migration ?

s A scheduler is a safe regroupement in terms of
synchronisation

s How to implement thread migration ?
s A possible answer : continuations




» CPS implementation ?
» Heavy modifications to the compiler
s Less efficient in our case

» Stack copy implementation ?
» How do we translate code pointers ?
s How do we rebind data ?
» What do we copy ?
= a new semantic




» Compatible computers (same architecture)

» Same program for all the computers involved
» A computer identification mechanism

» A scheduler dealing with migration

» Evaluation of all the global variables




» Migration of a FT from a src to a dst with its local
environment and its execution context

s All the accessible references from the local
environment are copied (from src to dst )

» The global variables are relinked
o The FT iIs attached to the main scheduler




let dest=132;; (* distant computer *)
let home=Migrate.addr_comp;; (* source computer *)

let rec loop h =

Printf.printf "Enter your msg\n";

flush stdout;

let s = read line() In
Migrate.migrate dest ;
Printf.printf "%s\n" s ; flush stdout;
Migrate.migrate h;
loop h;;

loop home;;

Migrate.exit();;
L e ead mgion mOCaml—p132)




o The OCaml marshaller
s Generic and polymorphic
» Works on functional values

» The Garbage Collector
s Efficient stack scanning
s Efficient heap exploration




» Capture of local variables
» Capture of the execution context
» Detachement of the thread system

» Marshalling




» Unmarshalling

» Update of the local environment
s Stack allocation
s Insertion of the copied values

» Update of the execution context
s New stack pointer

» Attachement to the thread system




» Risk of heap absorption
» Liveness analysis (in native)

» The programmer is in charge of the local environment




let master_addr=0;;
let job_list=ref [];;

let master home=
let n=ref 0 In

let rec job_producer()=
job_list :=
(fun x -> x + In) :: Yob_list;
Migrate.cooperate();
job_producer() in

job_producer()
.




let rec slave home=
migrate master_addr;
let job=
match !job list with
[] -> fun _ -> raise Not_found
| J ol > 1In
Migrate.migrate home;
(try
orintf "Result is %d\n" (job home)
with Not found ->
orintf "No job available\n");
Migrate.cooperate();

slave home:;




Create master master _addr;;

for I=1 to 3 do
for =0 to 5 do
create slave |
done
done;;

Migrate.exit();;




» Theoratically possible, technically difficult

» The difficulties :
s Different code pointers
s Different data representations
s Different optimisations
s Exception handling
s Different execution contexts




» A bytecode version, advantages :
s Code pointers problem solved
s Regular optimisations

» A bytecode version, drawbacks :
s No liveness analysis

s Doesn’t solve all the problems :
s Interpretor execution context

s EXceptions




» A semantic lead by the implementation

» Some other languages are more expressive : Acute, ...
» A simple semantic

» Possibly efficient




	Motivations
	Fair Threads
	Fair Threads : Caracteristics
	Inside a scheduler : Cooperative policy
	FT : Exemple1
	Synchronisation
	Exemple 2
	FT : Caracteristics for continuation migration
	Continuations in OCaml
	Migrating FT : Conditions
	FT migration : semantic
	Exemple : Chat
	Migration in OCaml
	Migration : Implementation (1)
	Migration : Implementation (2)
	Efficient migration ?
	Exemple (1)
	Exemple (2)
	Exemple (3)
	Migration on different architectures ? (1)
	Migration on different architectures ? (2)
	Conclusion

