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Motivations

Fair Threads in OCaml
An alternative to POSIX threads
Native implementation

Fair Thread Migration
A high level contruction for distributed programming
Permits communication in a type-safe manner

Objectives :
A clear semantic
An efficient implementation
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Fair Threads

Frédéric Boussinot

MIMOSA EMP-CMA project / Inria Sophia Antipolis

http://www-sop.inria.fr/mimosa/rp

The existing implementations
C
Java
Scheme
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Fair Threads : Caracteristics

Mixing cooperative and preemptive policies
Each thread is attached to a scheduler
Threads within a same scheduler are cooperative
Schedulers are concurrent to each-other

The synchronisation system
Based on “instants”
Takes place inside a scheduler
Each operation is “finite”
⇒ No dead-lock
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Inside a scheduler : Cooperative policy

Instant :

Execution of each thread until the next cooperation point

The scheduling policy is of type “round-robin”

The different ways to cooperate :

explicitly : function cooperate

implicitly : waiting await

HirondMLFair thread migration in O’Caml – p.5/23



FT : Exemple1

let sched=Fthread.create_scheduler();;

let rec fth x=

Printf.printf "I am ft number %d\n" x;

Fthread.cooperate();

fth x

;;

Fthread.create sched fth 1;

Fthread.create sched fth 2;

Fthread.start_scheduler sched;

Fthread.exit();;

(* Output : *)

(* I am ft number 1

I am ft number 2

I am ft number 1

... *)
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Synchronisation

A signal is emitted during an “instant”

A signal reaches all the fair threads waiting during an
instant

A thread can only wait for a signal during a limited
number of instants
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Exemple 2

let fth1()=

Printf.printf "I am %d I am waiting \n" x;

await signal;

;;
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FT : Caracteristics for continuation migration

Cooperative threads : clear semantic

No mutex
No lost signals
No distributed signals

Schedulers : grouped migration ?
A scheduler is a safe regroupement in terms of
synchronisation

How to implement thread migration ?
A possible answer : continuations
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Continuations in OCaml

CPS implementation ?
Heavy modifications to the compiler
Less efficient in our case

Stack copy implementation ?
How do we translate code pointers ?
How do we rebind data ?
What do we copy ?

⇒ a new semantic
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Migrating FT : Conditions

Compatible computers (same architecture)

Same program for all the computers involved

A computer identification mechanism

A scheduler dealing with migration

Evaluation of all the global variables
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FT migration : semantic

Migration of a FT from a src to a dst with its local
environment and its execution context

All the accessible references from the local
environment are copied (from src to dst )

The global variables are relinked

The FT is attached to the main scheduler
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Exemple : Chat

let dest=132;; (* distant computer *)
let home=Migrate.addr_comp;; (* source computer *)

let rec loop h =
Printf.printf "Enter your msg\n";
flush stdout;
let s = read_line() in

Migrate.migrate dest ;
Printf.printf "%s\n" s ; flush stdout;
Migrate.migrate h;
loop h;;

loop home;;
Migrate.exit();;

HirondMLFair thread migration in O’Caml – p.13/23



Migration in OCaml

The OCaml marshaller
Generic and polymorphic
Works on functional values

The Garbage Collector
Efficient stack scanning
Efficient heap exploration
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Migration : Implementation (1)

Capture of local variables

Capture of the execution context

Detachement of the thread system

Marshalling
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Migration : Implementation (2)

Unmarshalling

Update of the local environment
Stack allocation
Insertion of the copied values

Update of the execution context
New stack pointer

Attachement to the thread system
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Efficient migration ?

Risk of heap absorption

Liveness analysis (in native)

The programmer is in charge of the local environment

HirondMLFair thread migration in O’Caml – p.17/23



Exemple (1)

let master_addr=0;;
let job_list=ref [];;

let master home=
let n=ref 0 in

let rec job_producer()=
job_list :=

(fun x -> x + !n) :: !job_list;
Migrate.cooperate();
job_producer() in

job_producer()
;;
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Exemple (2)

let rec slave home=
migrate master_addr;
let job=

match !job_list with
[] -> fun _ -> raise Not_found

| j :: rl -> j in
Migrate.migrate home;
(try

printf "Result is %d\n" (job home)
with Not_found ->

printf "No job available\n");
Migrate.cooperate();
slave home;;
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Exemple (3)

create master master_addr;;

for i=1 to 3 do
for j=0 to 5 do

create slave i
done

done;;

Migrate.exit();;
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Migration on different architectures ? (1)

Theoratically possible, technically difficult

The difficulties :
Different code pointers
Different data representations
Different optimisations
Exception handling
Different execution contexts

HirondMLFair thread migration in O’Caml – p.21/23



Migration on different architectures ? (2)

A bytecode version, advantages :
Code pointers problem solved
Regular optimisations

A bytecode version, drawbacks :
No liveness analysis
Doesn’t solve all the problems :

Interpretor execution context
Exceptions
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Conclusion

A semantic lead by the implementation

Some other languages are more expressive : Acute, ...

A simple semantic

Possibly efficient
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