
HirondML
Fair thread migration in O’Caml

Emmanuel Chailloux (PPS) - Julien Verlaguet (Univ P6)

http://www.pps.jussieu.fr/˜emmanuel/Public/Dev/Hiro ndML

HLPP 2005

HirondMLFair thread migration in O’Caml – p.1/23



Motivations

Fair Threads in OCaml
An alternative to POSIX threads
Native implementation

Fair Thread Migration
A high level contruction for distributed programming
Permits communication in a type-safe manner

Objectives :
A clear semantic
An efficient implementation

HirondMLFair thread migration in O’Caml – p.2/23



Fair Threads

Frédéric Boussinot

MIMOSA EMP-CMA project / Inria Sophia Antipolis

http://www-sop.inria.fr/mimosa/rp

The existing implementations
C
Java
Scheme

HirondMLFair thread migration in O’Caml – p.3/23



Fair Threads : Caracteristics

Mixing cooperative and preemptive policies
Each thread is attached to a scheduler
Threads within a same scheduler are cooperative
Schedulers are concurrent to each-other

The synchronisation system
Based on “instants”
Takes place inside a scheduler
Each operation is “finite”
⇒ No dead-lock

HirondMLFair thread migration in O’Caml – p.4/23



Inside a scheduler : Cooperative policy

Instant :

Execution of each thread until the next cooperation point

The scheduling policy is of type “round-robin”

The different ways to cooperate :

explicitly : function cooperate

implicitly : waiting await

HirondMLFair thread migration in O’Caml – p.5/23



FT : Exemple1

let sched=Fthread.create_scheduler();;

let rec fth x=

Printf.printf "I am ft number %d\n" x;

Fthread.cooperate();

fth x

;;

Fthread.create sched fth 1;

Fthread.create sched fth 2;

Fthread.start_scheduler sched;

Fthread.exit();;

(* Output : *)

(* I am ft number 1

I am ft number 2

I am ft number 1

... *)

HirondMLFair thread migration in O’Caml – p.6/23



Synchronisation

A signal is emitted during an “instant”

A signal reaches all the fair threads waiting during an
instant

A thread can only wait for a signal during a limited
number of instants

HirondMLFair thread migration in O’Caml – p.7/23



Exemple 2

let fth1()=

Printf.printf "I am %d I am waiting \n" x;

await signal;

;;

HirondMLFair thread migration in O’Caml – p.8/23



FT : Caracteristics for continuation migration

Cooperative threads : clear semantic

No mutex
No lost signals
No distributed signals

Schedulers : grouped migration ?
A scheduler is a safe regroupement in terms of
synchronisation

How to implement thread migration ?
A possible answer : continuations

HirondMLFair thread migration in O’Caml – p.9/23



Continuations in OCaml

CPS implementation ?
Heavy modifications to the compiler
Less efficient in our case

Stack copy implementation ?
How do we translate code pointers ?
How do we rebind data ?
What do we copy ?

⇒ a new semantic

HirondMLFair thread migration in O’Caml – p.10/23



Migrating FT : Conditions

Compatible computers (same architecture)

Same program for all the computers involved

A computer identification mechanism

A scheduler dealing with migration

Evaluation of all the global variables

HirondMLFair thread migration in O’Caml – p.11/23



FT migration : semantic

Migration of a FT from a src to a dst with its local
environment and its execution context

All the accessible references from the local
environment are copied (from src to dst )

The global variables are relinked

The FT is attached to the main scheduler

HirondMLFair thread migration in O’Caml – p.12/23



Exemple : Chat

let dest=132;; (* distant computer *)
let home=Migrate.addr_comp;; (* source computer *)

let rec loop h =
Printf.printf "Enter your msg\n";
flush stdout;
let s = read_line() in

Migrate.migrate dest ;
Printf.printf "%s\n" s ; flush stdout;
Migrate.migrate h;
loop h;;

loop home;;
Migrate.exit();;

HirondMLFair thread migration in O’Caml – p.13/23



Migration in OCaml

The OCaml marshaller
Generic and polymorphic
Works on functional values

The Garbage Collector
Efficient stack scanning
Efficient heap exploration

HirondMLFair thread migration in O’Caml – p.14/23



Migration : Implementation (1)

Capture of local variables

Capture of the execution context

Detachement of the thread system

Marshalling

HirondMLFair thread migration in O’Caml – p.15/23



Migration : Implementation (2)

Unmarshalling

Update of the local environment
Stack allocation
Insertion of the copied values

Update of the execution context
New stack pointer

Attachement to the thread system

HirondMLFair thread migration in O’Caml – p.16/23



Efficient migration ?

Risk of heap absorption

Liveness analysis (in native)

The programmer is in charge of the local environment

HirondMLFair thread migration in O’Caml – p.17/23



Exemple (1)

let master_addr=0;;
let job_list=ref [];;

let master home=
let n=ref 0 in

let rec job_producer()=
job_list :=

(fun x -> x + !n) :: !job_list;
Migrate.cooperate();
job_producer() in

job_producer()
;;

HirondMLFair thread migration in O’Caml – p.18/23



Exemple (2)

let rec slave home=
migrate master_addr;
let job=

match !job_list with
[] -> fun _ -> raise Not_found

| j :: rl -> j in
Migrate.migrate home;
(try

printf "Result is %d\n" (job home)
with Not_found ->

printf "No job available\n");
Migrate.cooperate();
slave home;;

HirondMLFair thread migration in O’Caml – p.19/23



Exemple (3)

create master master_addr;;

for i=1 to 3 do
for j=0 to 5 do

create slave i
done

done;;

Migrate.exit();;

HirondMLFair thread migration in O’Caml – p.20/23



Migration on different architectures ? (1)

Theoratically possible, technically difficult

The difficulties :
Different code pointers
Different data representations
Different optimisations
Exception handling
Different execution contexts

HirondMLFair thread migration in O’Caml – p.21/23



Migration on different architectures ? (2)

A bytecode version, advantages :
Code pointers problem solved
Regular optimisations

A bytecode version, drawbacks :
No liveness analysis
Doesn’t solve all the problems :

Interpretor execution context
Exceptions

HirondMLFair thread migration in O’Caml – p.22/23



Conclusion

A semantic lead by the implementation

Some other languages are more expressive : Acute, ...

A simple semantic

Possibly efficient

HirondMLFair thread migration in O’Caml – p.23/23


	Motivations
	Fair Threads
	Fair Threads : Caracteristics
	Inside a scheduler : Cooperative policy
	FT : Exemple1
	Synchronisation
	Exemple 2
	FT : Caracteristics for continuation migration
	Continuations in OCaml
	Migrating FT : Conditions
	FT migration : semantic
	Exemple : Chat
	Migration in OCaml
	Migration : Implementation (1)
	Migration : Implementation (2)
	Efficient migration ?
	Exemple (1)
	Exemple (2)
	Exemple (3)
	Migration on different architectures ? (1)
	Migration on different architectures ? (2)
	Conclusion

