Slide 1

Slide 2

HLPP’2003

Objective Caml 1

-

N

~

A Portable Implementation for Objective Caml Flight

iV e iV e iV e
> o b o b

Emmanuel Chailloux
http://www.pps.jussieu.fr/ emmanuel
Equipe PPS (CNRS UMR 7126) - University Paris 6 - France
and
Christian Foisy
Digital Fountain, Fremont, CA, USA

2nd HLPP - June 2003 - Paris - France

-

I S

SUMMARY '

. Objective Caml in a few words
. Caml-Flight
. Objective Caml Flight = Objective Caml + Caml-Flight

. Conclusion and future work

HLPP’2003 Objective Caml 2

K Objective Caml in practice' \

e One of the most popular ML dialect:

— efficient code,
. — large set of general purpose and domain specific libraries,
Slide 3

— automatic memory management,

— used both for teaching (academy) and for writing high-tech
applications (industry)

e Product of research results since 80’s in: type theory, language
design and implementation.

K. Developped at INRIA (France). /

/ Objective Caml features' \

Functional language + imperative extension,

High-level datatypes + pattern-matching,

Polymorphic + implicit typing:
Slide 4 — strongly and static typed,
— types are inferred,

— types are polymorphic (the most general ones).

Different programming styles (in a common typing framework):
— Class based object oriented programming,

— High-level modules (SML style)
\ — More recently: labels and variants added. J

Slide 5

Slide 6

HLPP’2003 Caml-Flight 3

4 ™
A Small Example (1)'

let rec map f 1 =

if (1 == [1) then []

else (f (List.hd 1)) :: (map f (List.tl 1));;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

map : Vaf.(a —) — a list — 3 list

(map (fun x -> x + 1) [1;2;3],
map (fun x -> not x) [true; falsel]);;
- : int 1list * bool list = ([2; 3; 4], [false; truel)

N /

4 N

A Small Example (2)'

let rec map f 1 =
match 1 with
1 -> 10
| h::t => (£ h) :: (map f t);;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

N /

Slide 7

Slide 8

HLPP’2003 Caml-Flight 4

4 ™
Caml-Flight(1) I

based on the SPMD programming model;

data-parallel extension for Caml;

explicit parallelism;
e preserves the property of determinism;

First implementation in 1994 (Foisy’s thesis).

N /

4 N
Caml-Flight program I

e runs n copies of itself

e with a fixed numbers of processes

All processes are created at the beginning of the computation and

remain active until the end.

Each copy is parameterized by its local address and knows the total
number of processes.

It introduces only two operations : an operation of synchronization

(sync) and an operation for communications (get).

N /

Slide 9

Slide 10

HLPP’2003

Caml-Flight 5

-

Syntax Extension I

:= Simple_expr

Expr :

| sync Expr
| get Expr from Expr

Simple_expr ::= ...

| local | nodes

e 2 constants : local and nodes
e sync : synchronization block

e get e from i : arequest for a remote computation of e at i.

N

~

/

-

Typechecking I

'Fe:r
I'F sync(e) : 7
F'kep:intTkFey:7m V(r)=0¢
'l get(ey,eq) : 7

F local : int

E nodes : int

e The two constants local and nodes are integers.

e sync(e) has type of e

\o get e2 from el has type of es (monomorphic V(1) = ¢)

~

/

HLPP’2003 Caml-Flight 6

Synchronization Block, Communication Environment'

sync(e) :

Slide 11 e creates a communication environment (CE)

e allows in its scope distant computations from the same sync
e no variable declaration inside, no abstraction

e 1o nested sync

N /

s ~

get e from 1i:

e request for a distant computation of e at processor
Slide 12 e must be inside scope of a sync
e 1o scope extension for a get outside a sync

e waits for the result : a value or a remote exception which will

raise locally
wave :

e w-th encountered block of synchronization

N /

Slide 13

Slide 14

HLPP’2003

Caml-Flight 7

K Example 1 I

open Flight;;

let app_array f v =
let len = Array.length v in
let step = ref O in
let index = ref (!step + local) in
while (!'index < len) do
v.('index) <- f (v.(!index));

step := !step + nodes;
index := !step + local
done; ;

Qo communication!!!

~

-

Example 2 I

Begin sync

~

End sync

< GET

»
>

<GET

open Flight;; PO
let £ x =
sync
y (P1
if local == 0 then O
else (get x + 1
P2

< GET

\/

<GET

from (local - 1))
+ (get x + 2
from (local - 1))
)5

(f local);;
close_Flight();;

\/

HLPP’2003 Caml-Flight 8

K Example 3 I \

let f x

sync (if local <> O then
get x from (local -1)
else 0);;

let g x = sync (if local <> O then
Slide 15 get x from (local -1)
else 0);;

let main() =
if local == 0 then f O else g local;;

main();;

Process 0 and process 1 are not inside the same wave :

b no communication /

/ Asynchronicity Depth I \

maximum distance, in wave, between the slowest and fastest process :

e same value for all processes,
Slide 16 e maximum frozen CE : p+ 1,

e pipeline between processes

Spatial Recursion I

e allows nested same sync

e stays at the same wave

\o communication environment is not modified /

HLPP’2003 Objective Caml Flight 9

4 N

Example 4 I

. let rec scanf (v: int list) =
Slide 17 sync(if local ==
then [v]

else v::(get (scanf v) from (local-1)))

N /

Portable Implementation for Objective Caml'

using :

Slide 18 e camlp4 : to extend the grammar;
e threads library : to execute requests and current evaluation;
e unix library : to communicate requests and results;

e Marshal module : to freeze CE and to transfert structured

values;

N /

HLPP’2003 Objective Caml Flight 10

Implementation Design I

e nodes program instances

e cach one has at least two threads :
Slide 19

— a server which can receive requests from intances
— current evaluation
e cach received request starts a new thread

e cach program instance has an IP address and an unique port

e each program instance knwows all couples (IP adr, port)

N /

Implementation Design I

By program transformation : an Objective Caml Flight program will

be rewritten to an Objective Caml program.

Slide 20 sync transforamtion :

e [sync(e)] — begin_sync(n,ce) ; [e] ; end_sync(n)

e [get e from i — drequest from to n_get n_sync n_wave
where ce contains closures corresponding to the get expressions :

fun () -> e

N /

Slide 21

Slide 22

HLPP’2003

Objective Caml Flight 11

-

program instance 0

Sending a request'

program instance 1

~

N

thread 1 server server thread 1
GET

thread 2 current evalution current evalution thread 2

program instance 0 program instance 1

thread 1 server server thread 1
GET

thread 2 current evalution current evalution thread 2

thread 3 request

-

program instance 0

Sending a result'

program instance 1

thread 1 server server thread 1
GET
thread 2 current evalution current evalution thread 2
thread 3 request I
epply

program instance 0

thread 1 server

thread 2 | current evalution

thread 3 request

N

current evalution

program instance 1

server thread 1

thread 2

HLPP’2003 Objective Caml Flight 12

K Flight module I \

e defines local and nodes
e using communications values
type ’a valeur = Valeur of ’a | Exn of exn;;

a remote exception will be raised locally.

Slide 23 :
e manages some global variables : waves, current sync number, ...
e and defines several usefull functions :
— close_Flight : to wait for the end of all processes
— begin_sync : is called when evaluation enters inside a sync
— save_closures i: to freeze closures corresponding to gets
— end_sync : when process exits from a sync
K — drequest : runned when a request is needed. /
/ Syntax Extension (1) I
pa_ocf.ml: camlp4 parser file
expr
[["sync“; ll(ll; c = sync_expr; n)n ->
incr num_sync;
Slide 24 num_get := 0;

where ”sync_expr” are :
e basic operators, apply
e control structure (sequence, if)

e structured values (records, arrays) for access

e and get
N /

Slide 25

Slide 26

HLPP’2003

Objective Caml Flight 13

-

N

["get"; e = sync_expr; "from";

Syntax Extension (2)

begin
incr num_get;

let ne = <:expr< Flight.save_closure

(Marshal.to_string (fun() -> e) [Marshal.Closures]) >>

in
env := lenv @ [ne]l;

<:expr< if n == Flight.local then $

n = sync_expr ->

e$ else

Flight.drequest n $int:string_of_int !num_get$

>>

end

~

-

let £ x = Flight.env_buffer :=

Translation Example

[1; begin

Flight.save_closure
(Marshal.to_string (fun () -> x + 1) [Marshal.Closures]);
Flight.save_closure
(Marshal.to_string (fun () -> x + 2) [Marshal.Closures]);
let ___fun_sync () =
if Flight.local == O then O
else
(if Flight.local - 1 == Flight.local then x + 1
else Flight.drequest (Flight.local - 1) 1) +
(if Flight.local - 1 == Flight.local then x + 2
else Flight.drequest (Flight.local - 1) 2)
in
match Flight.sync_type.(0), Flight.sync_type.(1) with
0, 0 >
Flight.begin_sync 1;
let ___res_sync =
try ___fun_sync () with
Flight.RemoteExn e -> raise e
| e -> raise e

in

Flight.end_sync (); ___res_sync
I s, ___g >
if __s==1& ___g==01| ___g==1 then ___fun_sync O

else raise Flight.NestedSync

open Flight;;
let f x =
sync (
if local == 0 then 0
else (get x + 1

from (local - 1))

+ (get x + 2

from (local - 1))

)i

(f local);;
close_Flight();;

/

HLPP’2003 Objective Caml Flight 14

4 N

% ./mon

Usage: mon filename port depth machine_1 ... machine_n

e mon sends on machine_ i a copy of filename with its own port
Slide 27 number : port + 141

e cach new process answers to mon when it’s ready

e when all are ready, mon indicates it to all processes and parallel

program can start.

Each procces has a unique couple (IP address, port number) :

= different copies can run on the same machine.

N /

a I
Limitations I

e monomorphic get : unsafe

Slide 28 e no nested sync : dynamic checking
e 1no new variables introduction inside a sync

But this new version allows side effects inside CE

= and using arrays as data structures.

N /

HLPP’2003 Objective Caml Flight 15

K Benchmarks ' \

Intel fib_1 we_seek life
LlnuX 1 wave 1 wave 30 waves
Objective Caml byte-code 6.7 8.8 12.8
1/1/0 9.8 9.4 13.4
0.7 0.93 0.95
2/2/0 7.2 6 7.6
. 0.93 1.4 1.7
Slide 29 3/3/0 7 5.2 5.8
0.96 1.7 2.2
4/4/0 6 4.8 5.1
1.12 1.8 2.5
5/5/0 5.7 4.7 4.7
1.18 1.9 2.7

speedup factor depends of :

e sequential computation / number of distant requests

Ko communications / number of waves /

4 ™
Map template I

Working on arrays: to simplify we suppose len mod nodes = 0

let check a =
let la = Array.length a in
la mod nodes == 0;;
.
Sllde 30 let map_seq f a e =
let r = Array.create (Array.length a) e in
for i=0 + (local*nodes) to (local+l)#*nodes -1 do
r.(i) < £ (a.(1)
done;
;s

let map f a el all scan =
if check a then
let v = map_seq f a el in
let v2 = scan v all in v2
else failwith "map";;

N /

HLPP’2003 Objective Caml Flight 16

4 N

Different scans I

Slide 31 1. spatial recursion : 1 wave, nodes communications
2. naive scan : nodes waves, nodes communications

3. optimized scan : logs(nodes) waves, nodes communications

N /

Naive scan : nodes waves.

let len = Array.length a in

let shift = len / nodes in

Slide 32 let r = Array.create len a.(0) in

let step = ref 1 in

let naive_scan a all =

while (!step < nodes) do
sync (
if local == O then
Array.blit (get a from !step) (nodes*shift) r (nodes*shift) shift
)5
incr step
done;
if all then sync(if local <> O then get r from O else r)

else r;;

N /

HLPP’2003 Objective Caml Flight 17

An optimized version'

nodes = 2™

let scan2 a all =

let len = Array.length a in

let shift = (len / nodes) in

. let npass = int_of_float (sqrt (float_of_int nodes)) in
Sllde 33 let r = Array.create len a.(0) in
let step = ref 1 in
while (!step < nodes) do

sync (

if local mod (2 * !step) = O then
Array.blit (get a from (local + !step)) (local * !step *shift)
r (local * !step *shift) (!step * shift)

)5
step := !step * 2
done;

if all then sync(if local <> O then get r from O else r)
else r;;

Conclusion '

e portable implementation

e pedagogical tool

Slide 34 Future WOI‘k'

to optimize communications

to define some templates (as map)

to integrate classes and functors

e to write real applications using these templates

