Abdeljaouad-Tej, I; Orange, S.(F-PARIS6-IP6); Renault, G.(F-PARIS6-IP6); Valibouze, A.(F-PARIS6-IP6)
279--294.
Let $R=K[X_1,X_2,\dots,X_n]$ be a polynomial ring over a perfect field
$K$. The symmetric group $S_n$ acts naturally on this ring. Let $I$ be
an ideal of this ring generated by a triangular set of $n$ polynomials
of $R$. The stabilizer ${\rm Dec}(I)$ of $I$ is called the decomposition
group.
In this paper, the authors use the backtracking technique of
G. Butler \ref[ Fundamental algorithms for permutation groups, Lecture
Notes in Comput. Sci., 559, Springer, Berlin, 1991; MR1225579 (94d:68049)] to develop
algorithms 2.1 and 3.8, utilizing the MAGMA algebra system software,
to study the decomposition group of ${\rm Dec}(I)$.
In Section 3, it is shown that if ${\rm Dec}(I)=S_n$, algorithm
2.1 computes only $n(n+1)$ membership tests in order to determine a
generating set composed of $n-1$ transpositions. In Section 4, for a
triangular ideal $I$, computation of ${\rm Dec}(I)$ with algorithm 3.8 leads to
the following cases:
\roster
\item A backtrack appears and $I$ is not pure Galois.
\item $I$ is pure Galois if and only if ${\rm Card}({\rm Dec}(I))={\rm
cardinal}$
of the variety of $I$.
\endroster
Section 5 is devoted to comparison of various algorithms.
Reviewed by R. K. Markanda
Previous Item
Lorsqu'un polynôme est symétrique en les racines d'un polynôme d'une variable
F,
le théorème fondamental des fonctions symétriques nous assure qu'il s'exprime
en les coefficients de F. L'effectivité de ce théorème existe depuis bien
longtemps(Formule de Waring avec réécriture, Lagrange avec le résultant,
Cauchy avec ses modules, ...) mais avec des
problèmes de
complexité. Dans mes travaux antérieurs,
inclus dans le module SYM, et dans d'autres (voir par exemple, Thèse de
L.E. Soicher pour le calcul de résolvantes absolues linéaires) ces problèmes de
complexité sont contournés. C'est ce théorème sur lequel s'appuie le calcul
des résolvantes dites absolues.
Lorsque le groupe symétrique est remplacé par un groupe contenant le groupe de
Galois (et plus généralement par l'injecteur d'un idéal de Galois), les
coefficients appartiennent encore au corps de base ; c'est le
fameux
théorème de Galois qui s'applique. Mais
efficacement sans
passer par des approximations numériques (R.P. Stauduhar, 1973 ou Thèse d'Yves
Eichenlaub, Bordeaux-France, fonction galois dans GP-Paris). Dans le rapport
LITP 93.61
"Résolvantes de Lagrange" (voir sa version électronique dans la
prépublication 96-10: de l'équipe
) une
méthode est proposée en passant par des éléments primitifs contruits
inductivement. Le présent article présente une solution élégante et efficace
utilisant les idéaux de Galois.
Cet article se borne aux injecteurs d'idéaux de Galois purs (i.e. aux
groupes). Le résultat est généralisé à tous les injecteurs dans
.
Let $f\in k[X]$ be a separable polynomial of degree $n$, where $k$ is
a perfect field. Let $\overline k$ be the algebraic closure of $k$ and
$\Omega=(\alpha _1 ,\dots, \alpha _n)\in{\overline k}{}^n$, where
$\alpha _1 , \dots, \alpha _n$ are the distinct roots of $f$. If $L$
is a subgroup of the symmetric group $\Sigma _n$, the authors define
the Galois $(L,\Omega)$-ideal $I_\Omega ^L $ \rm as $I_\Omega ^L
=\scr{J}(V)$, where $V=\{\sigma\Omega| \sigma\in L\}$ and
$\scr{J}$$(V)=\{f\in k[ x_1,\dots,x_n ]| f(\beta)=0$, for all
$\beta\in V\}$, a radical ideal in $k[x_1,\dots,x_n]$. Proposition 5.2
shows that $V$ is an "equiprojectable variety" in ${\overline
k}{}^n$\rm (a geometric concept introduced in the paper which means
that for all $1\leq i\leq n$, and for all $M\in \pi _i(V)$, card$(\pi
_i^{-1}(M)
\cap V)$ is finite and does not depend on $M$; $\pi _i :V \to
\overline k{}^i $ sends $(a_1 ,\dots, a _n)$ to $(a_1 ,\dots, a _i)$). A
zero-dimensional variety $U$ is equiprojectable if and only if
$\scr{J}$$(U)$ is an ideal generated by a separable triangular set of
polynomials \rm (Theorem 4.5). It follows (Theorem 5.3) that the ideal
$I_\Omega ^L $ has a Gröbner basis consisiting of a separable
triangular set of polynomials. For an ideal $I$ of this type, an
algorithm for computing the characteristic polynomial of the
multiplication by a polynomial $\Theta$ inside
$k[x_1,\dots,x_n]/I$ is given in Section 6. This algorithm yields
a method for computing relative resolvents in Galois theory,
illustrated by the case of an irreducible polynomial of degree 8 over
$\Bbb{Q}$. A discussion of various implementation and optimization
issues is included.
{For the entire collection see MR1800030 (2001f:12001).}
Reviewed by Aurelian Claudiu Volf
Previous Item
Next Item
MR1737231 (2001e:12002)
Rennert, Nicolas(F-PARIS6-IP6); Valibouze, Annick(F-PARIS6-IP6)
Calcul de
résolvantes avec les modules de Cauchy
(French. English, French summary)
[Computing resolvents using Cauchy modules]
Experiment. Math. 8 (1999),
no. 4, 351--366.
12F10
[Ce travail reprend et complète le rapport
IBP-LITP 95-02 , idem
à
MAX 96-11 téléchargeable]
[Versions préliminaires :
MAX 98-06
]
The authors give a new and efficient algorithm to compute some
characteristic polynomials of endomorphisms using Cauchy modules. This
algorithm is used for the computation of absolute resolvents and
multi-resolvents which are essential in the theory of fields and in
the constructive Galois theory.
Reducing the time of computation of a resolvent improves the
computation of the Galois group of a polynomial. This work presents a
simple and quick algorithm (Theorem 4.7) which computes, without
parasite factors, the characteristic polynomial of a multiplicative
endomorphism associated with one given invariant. This characteristic
polynomial is an exponent of the resolvent for the same invariant. The
problem of the parasite factors is then solved, the parasite
exponents; only the problem of the parasite exponents remains.
$§1$ and $§2$ present the introduction and give the notations. $§3$
recalls other results from the second author with or without
J.-M. Arnaudiès.
In $§4$ the study of the characteristic polynomial in the algebra of
universal decomposition reminds one of the methods of Arnaudiès
(1992), J.-L. Lagrange (1770) and A. Cauchy (1882). The Cauchy
modules, associated with the polynomial $f$, are $n$ polynomials if
the degree of $f$ is $n$. One main result is (Theorem 4.7) an explicit
algorithm giving the characteristic polynomial. And $(§5)$ if $f$ is
separable, the Cauchy modules form a reduced Gröbner basis of $f$
from the ideal of the symmetric relations. The authors generalise this
result to the case when $f$ is reducible.
In $§6$, devoted to the absolute resolvent (another main result), one
uses the method of F. Lebohey (1997) for giving a computation
algorithm of an exponent of the resolvent and next an algorithm of the
resolvent with reductions. In $§7$ one finds the algorithm for an
absolute multi-resolvent of $p$ polynomials.
At last $§8$ and $§9$ give implementation methods of different
algorithms (with the system of the axiom formal calculus) and allow one to
compare the efficiency.
This work is historically interesting, gives explicit algorithms and
is relatively complete.
ReviewedbyJean-Daniel Thérond
Previous Item
Next Item
MR1732887 (2001b:12005)
Valibouze, Annick(F-PARIS6-IP6)
Étude des relations algébriques entre les racines d'un polynôme d'une variable.
(French. English, French summary)
[Study of the algebraic relations among the roots of a univariate polynomial]
Bull. Belg. Math. Soc. Simon Stevin 6 (1999),
no. 4, 507--535.
12F10--
--(12Y05)
[Version
préliminaire :
LIP6 1997/014 et
MAX 98-03 ]
Commentaire d'Annick Valibouze
Cet article est issu de mon cours de Théorie de Galois, DEA ITCP 95/96,
Marrakech (Maroc), Octobre 1996, Pise (Italie), Mai 1997. C'est le travail
fondateur sur les idéaux de Galois. Il contient entre autre le
résultat fondamental décrit dans mon commentaire de
MR1457831
.
The paper contains a detailed study of the relations among the roots
of a polynomial by considering particular ideals containing the ideal
consisting of all symmetric relations of the roots and contained in
the (maximal) ideal of all relations between the roots. The main
results of the paper are a correspondence between the above ideals
and certain sets of permutations as well as an algorithm allowing the
construction of a system of generators of the ideal of
relations among the roots of the polynomial. The algorithm is
illustrated by an explicit numerical example.
Reviewed by Chr. U. Jensen
Previous Item
Next Item
MR1457831 (98f:12004)
Arnaudiès, Jean-Marie(F-PARIS6-MI) ; Valibouze, Annick(F-PARIS6-C)
Lagrange
Resolvents.
(English. English summary)
Algorithms for algebra (Eindhoven, 1996).
J. Pure Appl. Algebra
117/118 (1997), 23--40.
12F10
[Version Préliminaire plus complète : Rapport
LITP 93.61
"Résolvantes de Lagrange" ;
version téléchargeable, Notes
Informelles de Calcul Formel, Ecole Polytechnique]
Commentaire d' Annick Valibouze
Le rapport interne LITP 93.61 (1993) comporte entre autre un résultat
fondamental :
Il est
possible de calculer le corps des racines d'un polynôme d'une variable F
(i.e. un idéal de Galois maximal M)
en
rajoutant un unique polynôme à l'idéal des relations symétriques I_s (et je
rajoute ici :
donc, trivialement, à tout idéal de Galois le contenant). C'est l'analogue
pour l'idéal maximal M du
fameux
théorème de l'élement primitif de J.L. Lagrange pour le corps
des
racines K_F. Si un P(x) est
le polynôme minimal d'un élément primitif v de K_F (s'exprimant comme un
polynôme V en les racines du polynôme F) alors
M = I_s + [P(V)]
Evidemment, ce calcul comporte en lui toute la complexité du théorème de
l'élément
primitif (i.e. calcul et factorisation d'une résolvante absolue de degré n!)
mais aussi celle du calcul de la Base de Groebner de M. Mais, comme je
l'explique ci-après, l'idée
essentielle d'une construction réaliste de M réside dans ce résultat.
En
1996, j'ai généralisé ce résultat (voir
MR1732887 et
MR2141285 ) à tous les
idéaux de Galois en le rendant
effectif avec
les facteurs des résolvantes :
Soit J un idéal de Galois d'injecteur M et H un groupe tel que M alors l'idéal
de Galois I défini par H (et d'injecteur Gal(F)H) est calculable en rajoutant
un seul polynôme R à l'idéal J. J'appelle ce polynôme un
élément
M-primitif de
l'idéal de Galois I :
J = I + [R]
Ce polynôme R se déduit d'un facteur
irréductible
simple d'une H-résolvante M-relative ; R est l'évaluation de ce facteur en
l'H-invariant
M-relatif utilisé pour le calcul de la résolvante relative.
Pour le calcul des résolvantes relatives, voir justement l'article
MR1800031 avec
P. Aubry. Pouvoir calculer une résolvante relative de degré l'indice de H dans
M évite le calcule d'une résolvante absolue de degré l'indice de H dans le
groupe symétrique S_n ; c'est-à-dire, n! lorsque H est le groupe identité
(calcul de l'élement primitif v).
This well-written paper deals with the determination of the Galois
group of a given polynomial $f(X)\in K[X]$. Already Lagrange
introduced resolvents to attack this problem. Several years ago
Soicher, Foulkes, Stauduhar, McKay and others gave algorithms on how
to compute Galois groups of polynomials of low degree $({\le}11)$
using resolvents.
This computation goes as follows: Given an irreducible polynomial
$f(X)\in K[X]$ of degree $n$, first determine all transitive subgroups
of ${\germ S}_n$ (up to conjugacy). Next choose some $F\in
Z[X_1,\cdots,X_n]$. Denote the natural action of an element
$\sigma\in{\germ S}_n$ on $F$ by $^\sigma F$. Let ${\scr
O}(F)=\{^\sigma F, \sigma\in{\germ S}_n\}$ be the orbit of $F$. Then
${\rm Res}(F)=\prod_{G\in{\scr O}(F)}(X-G)$ is called the resolvent
polynomial of $F$. Let $\alpha_1,\cdots,\alpha_n$ be the roots of
$f(X)$ (in a fixed algebraic closure of $K)$. Next factor ${\rm
Res}(F,f)\coloneq{\rm Res}(F)(\alpha_1,\cdots,\alpha_n)$ over $K$. If
${\rm Res}(F,f)$ is separable, then the partition of the degree of
${\rm Res}(F,f)$ given by the degrees of the irreducible factors of
${\rm Res}(F,f)$ coincides with the partition of
$\deg({\rm Res}(F))=\#({\scr O}(F))$ given by the lengths of the orbits
obtained by the action of ${\rm Gal}(f)$ on ${\scr O}(F)$. It may
happen that it is not possible to deduce the Galois group from the
factorization of a single separable resolvent. For example, the
factorization of the discriminant of $f(X)$ tells us only whether
${\rm Gal}(F)$ is contained in ${\germ A}_n$ or not. Therefore, we have
to factor another resolvent. In the literature we find several tables
of resolvents whose factorizations suffice to compute the Galois group
of a polynomial of small degree.
Let $K$ be a field of characteristic 0. The main theorem of the paper
under review states that it is always possible to compute the Galois
group of $f(X)$ from the factorization of a finite number of separable
resolvents. The authors call it the chasing resolvents method.
It runs as follows: A partition of an integer $m\inN$ is an
$m$-tuple $(\alpha_1,\cdots,\alpha_m)\inN_0^m$ with
$\sum_{j=1}^mj\alpha_j=m$. Let $U,V$ be subgroups of $G$ and set
$e\coloneq[G\:U]$. Let ${\scr P}(V,U)=(\alpha_1,\cdots,\alpha_e)$ be
the partition given by the orbit lengths of the action of $V$ on $G/U$
(i.e. $\alpha_j$ is the number of orbits of length $j)$. Now ${\scr
P}(V,U)$ depends only on the conjugacy classes of $U$ and $V$ in
$G$. Let ${\scr C}_1,\cdots,{\scr C}_s$ be the conjugacy classes of
subgroups of $G$ (with a given ordering). Set $\overline\omega({\scr
C}_i,{\scr C}_j)={\scr P}(V,U)$ where $V\in{\scr C}_i, U\in{\scr
C}_j$. Then ${\scr P}_G=[\overline\omega({\scr C}_i,{\scr C}_j)]_{1\le
i,j\le s}$ is called the partition matrix of $G$. Theorem 14 states
that the rows of this matrix are distinct.
Next we have to introduce the resolvents. Set ${\scr
F}=K(X_1,\cdots,X_n), {\scr K}=K(\sigma_1,\cdots,\sigma_n)$, where
$\sigma_i$ is the $i{\rm th}$ elementary symmetric polynomial in
$X_1,\cdots,X_n$. Let $H<{\germ S}_n$. Let $\Psi$ be a polynomial in
the integral closure ${\scr F}^H\cap K[\sigma_1,\cdots,\sigma_n]$ of
${\scr S}=K[\sigma_1,\cdots,\sigma_n]$ in the fix field ${\scr F}^H$
of $H$ which is a primitive element of the extension ${\scr F}/{\scr
K}$. Then the minimal polynomial ${\scr L}_\Psi$ over ${\scr K}$ is
called the (generic) Lagrange resolvent of $H$ associated to
$\Psi$. Assume that ${\scr L}_{\Psi,f}={\scr
L}_\Psi(\alpha_1,\cdots,\alpha_n)$ is separable, where
$f(X)=\prod_{i=1}^n(X-\alpha_i)$. Then the partition given by the
degrees of the irreducible factors of ${\scr L}_{\Psi,f}$ over $K$
coincides with ${\scr P}_{{\germ S}_n}(G,H)$, where $G={\rm
Gal}(f)$. Since the rows of ${\scr P}_{{\germ S}_n}$ are distinct we
are done. Hence the conjugacy classes in the columns play the role of
test classes. The candidates for the Galois group can be found in
the rows of the partition matrix.
The authors illustrate their approach with an example. They compute
${\scr P}_{{\germ S}_4}$ and give Lagrange resolvents. From this
example we see that we do not have to consider all resolvents. If
$n=4$, then two resolvents instead of 11 suffice. Section 4 contains
an extension of the chasing resolvents method to relative
resolvents. This gives a way of throwing out multiple factors in the
absolute resolvent.
{For the entire collection see MR1457829 (97m:00022).}
Reviewed by Martin Epkenhans
Previous Item
Next Item
MR1448185 (98g:12005)
Valibouze, Annick(F-PARIS6-C)
Computation of the Galois groups of the resolvent factors for the
direct and inverse Galois problems.
(English. English summary)
Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995),
456--468,
Lecture Notes in Comput. Sci., 948,
Springer, Berlin, 1995.
12F10 (12F12)
[Versions Préliminaires : rapport IBP-Litp 1994/58 et
MAX 95-09 ]
Let $k$ be a field of characteristic 0 and $f(x)$ a squarefree
polynomial of degree $n$. Let $a_1,\cdots ,a_n$ be the roots of
$f(x)$ in some extension field of $k$ and let $H$ be a subgroup of
$S_n$ which acts in the obvious way on $k[x_1,\cdots ,x_n]$. Let
$h[x_1,\cdots ,x_n]$ be a polynomial which is also a primitive element
for $k(x_1,\cdots ,x_n)^H$ over $k(x_1,\cdots ,x_n)^{S_n}$. Let
$\operatorname{id}=f_1,f_2,f_e$ be a set of representatives of the
left cosets of $H$ in $S_n$ and let $h_i(x_1,\cdots
,x_n)=f_i(h(x_1,\cdots ,x_n))$. The resolvent of $f(x)$ by
$h(x_1,\cdots ,x_n)$ is the univariate polynomial $(y-h_1(a_1,\cdots
,a_n))\cdots (y-h_e(a_1, \cdots ,a_n))$. The Galois group of the
resolvents can be used to calculate the Galois group of the original
polynomial $f(x)$. This paper presents results for calculating the
Galois groups of resolvents for polynomials of low degree,
particularly degrees 8 and 10.
{For the entire collection see MR1448151 (97k:68003).}
Reviewed by James K. Deveney
Previous Item
Next Item
MR1230864 (94h:68101)
Lazard, D.(F-PARIS6-C) ; Valibouze, A.(F-PARIS6-C)
Computing subfields:
reverse of the primitive element problem .
(English. English summary)
Computational algebraic geometry (Nice, 1992),
163--176,
Progr. Math., 109,
Birkhäuser Boston, Boston, MA, 1993.
68Q40 (12Y05)
[Version Préliminaire :
Notes
Informelles de Calcul Formel, Ecole Polytechnique]
A new algorithm is presented to compute the subextensions of some
effectively given algebraic field extension $K\to L$, for arbitrary
base field $K$. Similarly, the algorithm can compute low degree
subfields of low degree extensions of $L$, but in general the Galois
group or Galois closure will not be computed. Some examples where $K$
is the field of rational numbers are given. No runtime analysis is
given, and it is not clear how the efficiency of the algorithm
compares to older algorithms for finding subfields. Such algorithms
are useful for the simplification of algebraic numbers.
{For the entire collection see MR1230853 (94b:13001).}
Reviewed by A. K. Lenstra
Previous Item
Next Item
MR1226584 (94g:05099)
Valibouze, Annick(F-PARIS6-C)
Sur l'arité des
fonctions.
(English. English summary)
[On the arity of functions]
European J. Combin.
14 (1993), no. 4,
359--372.
05E05--
--(12E99 20B30)
[Version Préliminaire :
Notes
Informelles de Calcul Formel, Ecole Polytechnique]
The author gives an approach to the computation of resolvents of
polynomials. Motivated by the process of extending $S\sb m$-symmetry to
$S\sb n$-symmetry of polynomials in $n$ variables $(m\leq n)$ an analogue
is considered for certain permutation subgroups of $S\sb n$. Applications
have been implemented into the computer algebra system MACSYMA.
Reviewed by Thomas Scharf
Previous Item
Next Item
MR1034742 (91a:13013)
Giusti, Marc(F-POLY); Lazard, Daniel(F-PARIS6-C); Valibouze, Annick(F-CNRS-L)
Algebraic transformations of polynomial equations, symmetric
polynomials and elimination.
Symbolic and algebraic computation (Rome, 1988),
309--314,
Lecture Notes in Comput. Sci., 358,
Springer, Berlin, 1989.
13P05 (14Q99)
[Versions Préliminaires :
ici
et
là , deux
Notes
Informelles de Calcul Formel, Ecole Polytechnique]
Consider the following problems: (i) Calculate the polynomial
whose roots are the squares of a given polynomial. (ii) Given
two polynomials $P$ and $Q$, calculate the polynomial whose
roots are all the differences of a root of $P$ and a root
of $Q$.
These are examples of the problem of "transforming equations
by a morphism". In this paper it is shown (after a technical
definition of the concept) that "transforming polynomial
equations by a morphism" is algorithmically equivalent to
elementary elimination theory by resultants and also to making
change of bases for symmetric polynomials. Implementations
in computer algebra systems and efficiency are discussed.
{For the entire collection see MR1034718 (90i:00005).}
Reviewed by Ralf Fröberg
Previous Item
MR1033311 (90m:05006)
Valibouze, Annick(F-PARIS6-C)
Fonctions symétriques et changements de bases.
(French. English summary)
[Symmetric functions and changes of basis]
EUROCAL '87 (Leipzig, 1987),
323--332,
Lecture Notes in Comput. Sci., 378,
Springer, Berlin, 1989.
05-04 (12-04
68R05)
[Version Préliminaire :
Notes
Informelles de Calcul Formel, Ecole Polytechnique]
Commentaire d' Annick Valibouze
Cet article est référencé dans celui de T. Hagedorn pour la résolution
par radicaux des équations de degré 6 :
@article {MR1793923,
AUTHOR = {Hagedorn, Thomas R.},
TITLE = {General formulas for solving solvable sextic equations},
JOURNAL = {J. Algebra},
VOLUME = {233},
YEAR = {2000},
NUMBER = {2},
PAGES = {704--757}
}
This paper describes two change-of-basis algorithms: the first one
expresses a symmetric polyno²mial in terms of elementary symmetric
polynomials, the second one in terms of power sums. They proceed by
using a decomposition formula for the product of two monomial
polynomials, which is triangular with respect to two appropriate total
orders on the partitions. The computations are made formally from a
representative for the monomial polynomials; this avoids having
to develop the monomial polynomials and saves a lot of time.
{For the entire collection see MR1033288 (90i:68007).}
Reviewed by Laurent Habsieger
Previous Item